基于圆对称径向双折射的径向偏振场光纤

朱方祥1,2,陈浩1,尹金德1,王金涛1,闫培光1*,韦会峰2,何飞2,陈抗抗2,于洋3

1深圳大学物理与光电工程学院深圳市激光工程重点实验室,广东 深圳 518060;

2武汉安扬激光技术有限责任公司,湖北 武汉 430000;

3国防科技大学文理学院,湖南长沙410073

摘要 当面向高功率径向偏振场激光的产生和传导时,在光纤内实现高的模式区分度与大的模场面积一直是核心的技术挑战。基于此,提出一种全新的径向偏振场光纤设计方案,通过在纤芯内部引入圆对称的径向分布热应力场,使得纤芯内形成径向双折射效应,有效打破常规光纤中偏振模式之间的简并,使 TM₀₁模、TE₀₁模和 HE₂₁模的 有效折射率差为 10⁻⁴量级,从而将 TM₀₁径向偏振模区分出来。同时,此类径向偏振场光纤更易实现 TM₀₁模场的 大模面积设计。

关键词 光学器件; 径向偏振场; 应力双折射; 光纤中图分类号 TN253; TN248.1文献标志码 A

doi: 10.3788/CJL202047.0101005

Radially Polarized Field Fiber Based on Circularly Symmetric Radial Birefringence

Zhu Fangxiang^{1,2}, Chen Hao¹, Yin Jinde¹, Wang Jintao¹, Yan Peiguang^{1*}, Wei Huifeng², He fei², Chen Kangkang², Yu Yang³

¹Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China;

²YSL Photonics, Wuhan, Hubei 430000, China;

³College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, China

Abstract High mode discrimination and large mode area in fibers are key technical challenges for the generation and transmission of high-power radially polarized field (RPF) laser. Based on this, a novel method for the design of a radially polarized field fiber is proposed. By introducing a circularly symmetrical radially distributed thermal stress field into the core of the fiber, a radial birefringence effect can be realized in the core, which effectively breaks the degeneracy between polarization modes in conventional optical fibers. The effective index difference among TM_{01} , TE_{01} , and HE_{21} modes is of the order of 10^{-4} . This allows the TM_{01} radial polarization mode to be separated. In addition, a large mode area design for the TM_{01} mode field can be achieved by using the proposed RPF fiber. **Key words** optical devices; radially polarized field; stress-induced birefringence; fiber **OCIS codes** 230.2285; 050.4865; 060.2280

1 引 言

径向偏振光是一种典型的圆柱矢量光束,具有 轴对称偏振结构,其光场中心存在偏振"奇点",光斑 的中心光强为零。相比线偏振光,径向偏振光在聚 焦情况下产生的焦点场呈螺旋对称不变形,可应用 于粒子捕获^[1]、粒子加速^[2]、光学存储^[3]、光学显 微^[4]、传感器^[5]和激光加工^[6-7]等领域,尤其在激光 加工中,径向偏振光的聚焦焦点质量好,可有效提高 加工质量和效率。少模光纤内,常见模式除了 HE₁₁

收稿日期: 2019-08-21; 修回日期: 2019-09-08; 录用日期: 2019-09-26

基金项目:国家自然科学基金(61775146,61805278)、中国博士后科学基金(2018M633704)、深圳市科技计划 (JCYJ20160520161351540)

^{*} E-mail: yanpg@szu.edu.cn

模式,还有 TM₀₁模、HE₂₁模和 TE₀₁模。其中 TM₀₁ 模为径向偏振场(RPF)分布,HEa模为混合偏振场 分布, TE₀₁模为角向偏振场分布。一般少模光纤 中,HE21、TM01和 TE01模式之间的有效折射率差在 10⁻⁵量级,这种低的模式区分度使模式串扰并简并 为LP₁₁模,不利于 RPF 光的产生以及长距离稳定 传导。已报导工作中有借助单模-少模光耦合器[8]、 长周期光纤光栅^[9]实现光纤内不同模式转换,以获 得 RPF。为打破 LP11 模中各矢量模的简并,2009 年 Ramachandran 等^[10] 采用了一种新型的纤芯结 构设计,在阶跃型纤芯之外额外增加一个更高折射 率的环形区域,TM₀₁模与其他模式的有效折射率差 达到了 1.8×10⁻⁴,再借助长周期光栅获得 TM₀₁ 模。然而,单模-少模光耦合器、长周期光纤光栅、以 及大折射率差环形纤芯光纤都是在低功率应用场景 下通过模式转换来实现 RPF。从方案本身思考,单 模-少模光耦合器与长周期光纤光栅都难以承受高 功率下 RPF 激光的转换,高折射率差环形纤芯光纤 的模场面积小,亦不利于高功率 RPF 激光传导。

当光纤应用于高功率 RPF 激光的传导与产生 时,如何同时确保高的模式区分度和大的模场面积, 是当前本领域内最关切的技术挑战之一。高的模式 区分度可降低不同模式间的串扰,从而让 RPF 光束 保持更高的模式纯度;大的 TMon模场面积能降低高功 率 RPF 激光运转和传导时的非线性效应,尤其对高峰 值功率的超快激光脉冲的产生和传导具有重要意义。 但遗憾的是,采用高折射率差环形纤芯方案不利于实 现 TMon大的模场面积设计,模式数量难以控制,模式 纯度难以保证,而常规少模增益光纤与相位波片结合 的方式需要兼顾相位波片的功率承受阈值,该方法通 常在主放大级部分牺牲了 RPF 的模式纯度^[11]。

本文提出一种全新的 RPF 光纤设计思路:基于 圆对称的热应力双折射,创造性地在纤芯中心掺杂 高热膨胀系数的 B₂O₃,引入一个径向分布的应力 场。该设计将会使 RPF 和角向偏振场产生模式双 折射,增大相互的有效折射率差,从而打破 TM₀₁ 模、TE₀₁模和 HE₂₁模之间的简并。本设计可用于实 现传导高功率的低数值孔径(NA)大模场无源光纤 或放大 RPF 的低 NA 大模场有源光纤。本文计算 圆对称光纤(包括阶跃型光纤和渐变掺杂型光纤)的 热应力分布,详细地研究了这种光纤关于径向和角 向的双折射特性,获得的 TM₀₁模、TE₀₁模和 HE₂₁ 模之间的有效折射率差为 1×10^{-4} 量级,同时其有 效模场面积较高折射率差环形纤芯光纤大幅增加。

2 基本理论

2.1 RPF 光纤的热应力分布

假设光纤由 n 个同心圆构成,每个圆环或圆域 内的热膨胀系数均匀分布,每个区域之间的热膨胀 系数不尽相同,则该光纤在柱面坐标系下的热应力 分布如下。

假设光纤参量不随轴向变化,则光纤为平面应 变模型,轴向无应变。根据方程^[12]

$$\nabla^2 \Psi = \frac{1+\nu}{1-\nu} \alpha \Delta T , \qquad (1)$$

式中: ∇ 为哈密顿算子; Ψ 为位移势,满足 $u_x = \frac{\partial \Psi}{\partial x}$, $u_y = \frac{\partial \Psi}{\partial y}$, u_x 为x方向的位移, u_y 为y方向的位 移; ν 为泊松比,取 0.186^[13]; ΔT 为室温与参考温度 之差,取 $\Delta T = 20 \ C - 1000 \ C = -980 \ C^{[13]}; \alpha$ 为 热膨胀系数,是关于位置坐标的函数,可以通过掺杂 来调控石英玻璃的热膨胀系数。掺杂石英玻璃的热 膨胀系数计算公式为^[13]

$$\alpha = (1 - m)\alpha_{\rm SiO_2} + m\alpha_{\rm dopant}, \qquad (2)$$

式中: α_{SO_2} 为纯石英玻璃的热膨胀系数,取值 5.4× 10⁻⁷ °C⁻¹; α_{dopant} 为掺杂物质的热膨胀系数,主要涉 及 GeO₂的热膨胀系数(7×10⁻⁶ °C⁻¹)和 B₂O₃的热 膨胀系数(10×10⁻⁶ °C⁻¹);*m* 为掺杂物质的摩尔分 数(单位为%,表示掺杂物分子的物质的量占总物质 的物质的量的百分比)。由此可得 *x* 方向的应变 ε_x 和 *y* 方向的应变 ε_y 之和为

$$\boldsymbol{\varepsilon}_{x} + \boldsymbol{\varepsilon}_{y} = \frac{\partial u_{x}}{\partial x} + \frac{\partial u_{y}}{\partial y} = \frac{\partial^{2} \boldsymbol{\Psi}}{\partial x^{2}} + \frac{\partial^{2} \boldsymbol{\Psi}}{\partial y^{2}} = \frac{1 + \nu}{1 - \nu} \boldsymbol{\alpha} \Delta T \,. \tag{3}$$

根据物理方程[14]

$$\frac{E}{(1+\nu)(1-2\nu)} \left[\nu(\varepsilon_x + \varepsilon_y) - (1+\nu)\alpha\Delta T\right] + p,$$

 $\sigma_z =$

式中:E 为弹性模量,取 78×10⁻⁹ m²•N^{-1[13]};p 为 修正项,以确保 $\iint \sigma_z dx dy = 0^{[15]}$ 。由此可得 z 方向 的应力分量为

$$\sigma_z = -\frac{E}{1-\nu} \alpha \Delta T + p , \qquad (5)$$

其中修正项为

$$p = \frac{E}{1-\nu} \Delta T \sum_{i=1}^{n} \alpha_i (r_i^2 - r_{i-1}^2) / r_n^2, \qquad (6)$$

式中: α_i 为从内到外第i 个圆环或圆域的热膨胀系数,即 α 在特定位置的值; r_i 为从内向外第i 个圆的 半径,规定 $r_0=0$ 。

根据物理方程^[15]和平衡方程^[16],

$$\sigma_z = \nu(\sigma_r + \sigma_\theta) - E\alpha\Delta T + p^*, \qquad (7)$$

$$\frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta r}}{\partial \theta} + \frac{\partial \tau_{zr}}{\partial z} + \frac{\sigma_r - \sigma_{\theta}}{r} = 0, \qquad (8)$$

式中:r 为径向坐标; θ 为方位角坐标; p^* 为修正项; σ_r 和 σ_θ 分别为径向和角向应力分量。由于该系统 是圆对称的系统,径向即主应力方向,所以无剪切应 力项 $\tau_{\theta r}$ 和 τ_{zr} 。联立(7)式和(8)式,消去角向应力 分量,可得

$$r \frac{\partial^2 \sigma_r}{\partial r^2} + 3 \frac{\partial \sigma_r}{\partial r} = 0.$$
(9)

该微分方程通解为

$$\sigma_r = a - \frac{b}{r^2}, \qquad (10)$$

式中:*a*和*b*为待定系数。将(10)式代入(8)式,整理得

$$\sigma_{\theta} = a + \frac{b}{r^2} \,. \tag{11}$$

根据条件^[15]:1) 纤芯中心的应力是有限的; 2)σ,在不同介质的交界处连续;3)σ,在光纤最外表 面处为零,因为无外应力,满足

$$p^* = p(1-\nu),$$
 (12)

$$a = \frac{1}{2}\sigma_z, \qquad (13)$$

$$b = \begin{cases} 0, & r \leq r_{1} \\ \frac{1}{2} \cdot \frac{E}{1-\nu} \Delta T(\alpha_{1} - \alpha_{2}) r_{1}^{2}, & r_{1} < r \leq r_{2} \\ \frac{1}{2} \cdot \frac{E}{1-\nu} \Delta T[(\alpha_{1} - \alpha_{2}) r_{1}^{2} + (\alpha_{2} - \alpha_{3}) r_{2}^{2}], & r_{2} < r \leq r_{3} \\ \vdots \\ \frac{1}{2} \cdot \frac{E}{1-\nu} \Delta T \sum_{i=1}^{n-1} (\alpha_{i} - \alpha_{i+1}) r_{i}^{2}, & r_{n-1} < r \leq r_{n} \end{cases}$$
(14)

若考虑渐变掺杂型光纤,则热膨胀系数不再局限于阶跃型分布,理论上可以是任意合理的函数分布,可以根据微元法及以上结论推得,形式上大体相同,只需要进行参数修正。

p 修正为

$$p^{\sim} = \frac{E}{1-\nu} \Delta T \int_{0}^{r_{\text{fiber}}} 2\alpha(r) r \, \mathrm{d}r / r_{\text{fiber}}^{2}, \qquad (15)$$

式中:r_{fiber}为整个光纤的半径(不考虑高分子涂覆层)。

b 修正为

$$b^{\sim} = \frac{1}{2} \frac{E}{1-\nu} \Delta T \left[\int_{0}^{r} 2\alpha(R) R \, \mathrm{d}R - \alpha(r) r^{2} \right],$$
(16)

式中:R为积分变量,表示径向坐标。

2.2 RPF 光纤的应力双折射

根据光弹效应,光纤的折射率与应力的关系式 为^[13]

$$\begin{cases} n_r = n_0 - [B_1\sigma_r + B_2(\sigma_\theta + \sigma_z)] \\ n_\theta = n_0 - [B_1\sigma_\theta + B_2(\sigma_z + \sigma_r)], \\ n_z = n_0 - [B_1\sigma_z + B_2(\sigma_r + \sigma_\theta)] \end{cases}$$
(17)

式中: B_1 和 B_2 为光弹系数,分别取 0.7572448× 10⁻¹² m²•N⁻¹和4.18775×10⁻¹² m²•N⁻¹; n_0 为光纤 在无应力状态下的折射率分布; n_r 、 n_θ 和 n_z 分别是 光纤在应力状态下径向、角向和轴向的折射率分布。 则阶跃型光纤关于径向和角向的双折射B和渐变掺 杂型光纤关于径向和角向的双折射B²分别为

$$B = n_{r} - n_{\theta} = (B_{1} - B_{2})\Delta T \frac{E}{1 - \nu} \begin{cases} 0, & r \leq r_{1} \\ (\alpha_{1} - \alpha_{2})r_{1}^{2}/r^{2}, & r_{1} < r \leq r_{2} \\ [(\alpha_{1} - \alpha_{2})r_{1}^{2} + (\alpha_{2} - \alpha_{3})r_{2}^{2}]/r^{2}, & r_{2} < r \leq r_{3} \\ \vdots & \vdots \\ \sum_{i=1}^{n-1} (\alpha_{i} - \alpha_{i+1})r_{i}^{2}/r^{2}, & r_{n-1} < r \leq r_{n} \end{cases}$$
(18)

$$B^{\sim} = n_r - n_{\theta} =$$

$$(B_1 - B_2) \Delta T \frac{E}{1 - \nu} \left[\int_0^r 2\alpha(R) R \, \mathrm{d}R / r^2 - \alpha(r) \right] .$$
(19)

关于光纤在无应力状态下的折射率分布 n_0 ,纯 石英玻璃的折射率可根据经典色散公式计算^[17]。 此外可以通过掺杂来改变石英玻璃的折射率,掺杂 GeO₂和 B₂O₃引起的折射率变化与掺杂的摩尔分数 成线性关系^[18],每掺杂摩尔分数为 1%的 GeO₂和 B₂O₃,引起的折射率变化大约分别为+14.26×10⁻⁴ 和 -4.2×10^{-4} ,由此可估算不同掺杂情况下的石英 玻璃折射率。

从(18)式可以得出,对于阶跃型光纤:1)光纤中 心没有双折射,如果纤芯只有一层结构则不能有效 产生双折射,纤芯结构至少需要两层;2)应力双折射 会以 1/r²的衰减速度沿径向衰减,需合理设计热膨 胀系数分布和折射率分布,确保应力双折射与 LP₁₁ 模场的分布重叠区很大,才能有效产生模式双折射 (>1×10⁻⁴)。

2.3 RPF 光纤的数值仿真方法

根据以上计算,光纤的相对介电常数张量为

$$\widetilde{\boldsymbol{\varepsilon}} = \begin{bmatrix} n_r^2 & 0 & 0 \\ 0 & n_{\theta}^2 & 0 \\ 0 & 0 & n_z^2 \end{bmatrix} .$$
(20)

以上计算都是在柱面坐标系下完成的,但有限 元法数值仿真需要在直角坐标下进行,所以需要进 行坐标系的变换。在直角坐标下的相对介电常数张 量为

$$\bar{\boldsymbol{\varepsilon}} = \boldsymbol{T}^{-1} \tilde{\boldsymbol{\varepsilon}} \boldsymbol{T}, \qquad (21)$$

式中:T 为变换矩阵,具体表达式为

$$\boldsymbol{T} = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}.$$
 (22)

位置坐标的变换为

$$\begin{cases} r = \sqrt{x^2 + y^2} \\ \sin \theta = \frac{y}{\sqrt{x^2 + y^2}} \end{cases}$$
(23)

用有限元法对光纤进行数值仿真,将(21)式代 入计算模型中计算分析光纤的波导模式,可以获得 模场分布、模式有效折射率等信息。配合循环结构, 可以进行相应的扫描计算,便于光纤设计。

3 RPF 光纤设计

根据上述理论,提出一种全新的设计方案,纤芯 包含 corel 和 core2 两个区域,如图 1 所示。corel 中掺杂 B₂O₃ 和 GeO₂,其中 B₂O₃ 具有大的热膨胀 系数,用于产生圆对称的径向分布热应力场,而 GeO₂ 主要用于调整折射率分布,从而调整模场分 布,使应力双折射分布与 LP₁₁模场分布的重叠区增 大。core2 中掺杂 GeO₂用于传导 RPF。包层为纯 石英玻璃。

图 2 是以图 1 的结构为基础,考察掺杂物质浓 度和纤芯结构对模式退简并的影响,图中每一条曲 线都是通过用控制变量法单独研究其中一个变量得 到。在图 2 中,x、y、z 三个箭头标明三个坐标轴的 方向,其中 x 轴表示 core2 的直径(整个纤芯的直 径,可在拉丝中改变光纤直径来控制,目 core2 的直 径与包层直径具有固定比例 1:10),z 轴表示模式 间的有效折射率差 $\Delta n_{\rm eff}$, 而 y 轴是主要考察变量。 其中图 2(a)考察的是 corel 中 GeO₂的摩尔分数(v轴)对模式退简并的影响,GeO2主要用于调整 corel 区域的折射率,从而调控模场分布;图 2(b)考察的 是纤芯结构对模式退简并的影响,纤芯结构被定量 为 corel 与 core2 的直径之比 D'(y 轴), 纤芯结构 的变化既可调控模场分布又可调控双折射分布。图 2 中方形标记曲线为 HE11 模与 TM01 模的有效折射 率差,圆形标记曲线为 TM₀₁模和 HE₂₁模的有效折 射率差,三角形标记曲线为 HE21 模与 TE01 模的有 效折射率差。图 2 中点划线网格表示 Δn_{eff} 为 1× 10⁻⁴的平面,曲线在平面以上部分即为满足模式退 简并的标准。预先设定 core1 中 B₂O₃ 的摩尔分数 为17.5%,用于提供较大的热应力,预先设定 core2 中 GeO₂的摩尔分数为 1.18%, 初步确定光纤的 NA

水平, RPF 光纤内 GeO2 的摩尔分数相比于高折射 率差环形纤芯光纤已是大大降低,因此其 NA 远低 于高折射率差环形纤芯光纤。此外图 2(a)预先设 定 D'为 0.56,图 2(b)预先设定 core1 中 GeO₂的摩 尔分数为7%,通过图2发现,当 core1 中 GeO₂的摩 尔分数被设置为7%,即图2(a)虚线所标位置,且 D'为 0.56 时,即图 2(b) 虚线所标位置是最优化的 取值,TM₀₁-HE₂₁的有效折射率差都接近极大值。 此条件下, core2 的直径即便在 15~25 µm 大范围 内取值时,各模式间的有效折射率差都大于1× 10⁻⁴,因此在本方案中支持实现 TM₀₁模的大模面 积设计。

图 2 光纤参数对模式退简并的影响。(a) corel 中 GeO2浓度对模式退简并的影响;(b)纤芯结构对模式退简并的影响 Fig. 2 Effects of fiber parameters on mode degeneracy. (a) Effect of GeO₂ concentration in corel on mode degeneracy; (b) effect of fiber core structure on mode degeneracy

依据上述最优化设计条件,将 RPF 光纤的参数 选取为: corel 的直径为 11.2 µm, core2 的直径为 20 μm(即 D'为 0.56),包层直径为 200 μm; corel 中 B₂O₃、GeO₂、SiO₂的摩尔分数比例为 17.5:7:75.5, core2 中掺 GeO2 的摩尔分数为 1.18%。下面对此 参数下 RPF 光纤进行计算以更直观地获得光纤的 特性,计算结果如图3、图4和表1所示。

图 3 为在 1030 nm 处 RPF 光纤的折射率分布

和圆对称热应力场所导致的应力双折射分布。其 中,图 3(a)为光纤的折射率分布,实线为径向折射 率分布 n_x, 虚线为角向折射率分布 n_a, 点划线为轴 向折射率分布 n_z;图 3(b)为 TM₀模的模场分布(虚 线)与双折射分布(实线,即 $n_r - n_{\theta}$)。可见 TM₀₁模 的模场分布与介质双折射分布的重叠区大,且位于 大的双折射值范围之内,显然有利于 TM₀₁模与其 他模式的退简并。

图 3 RPF 光纤的各向异性折射率特性。(a) 1030 nm 处 RPF 光纤在 3 个方向上的折射率分布; (b) 1030 nm 处 TM₀₁模场分布与双折射分布

Fig. 3 Anisotropic refractive index properties of RPF fiber. (a) Refractive index profiles of RPF fiber in three directions at 1030 nm; (b) TM_{01} mode field distribution at 1030 nm and birefringence distribution

图 4(a)为光纤在 1 µm 波段的模式有效折射率 差,各模式间的有效折射率差都满足大于1×10-4 的要求。在 1030 nm 处的模式分布如图 4(b)所示, 图中箭头表示电场矢量分布,其中 TM₀₁模、HE₂₁模 和 TE₀₁模的有效模场面积分别为 369, 370,

 $386 \ \mu m^2$.

在不同波长处,TMo1等模式与圆对称应力双折 射区的重叠会发生相应变化,并影响到模式间的退 简并。仍以相邻模式间折射率差大于1×10⁻⁴为基 本要求,计算了不同波长处模式间的有效折射率差 以及有效模场面积,如表 1 所示。对此参数下的光 纤在 730~1570 nm 波长范围内其相邻模式有效折 射率差都大于 1×10^{-4} 。相比文献[10]中环形纤芯 直径约为 10 μ m,在通信波段其有效模场面积约为 100 μ m²,本设计中 RPF 光纤的 TM₀₁模场面积约 为700 μ m²,提升了7倍左右。此外,表2中第1行数

据显示了几种高折射率差环形纤芯的内外直径,外直 径普遍不超过 20 µm;第2行数据显示了上述高折射 率环形纤芯的折射率与包层的折射率之差,折射率差 普遍远高于 10⁻³量级。以上结果直观表明,采用圆 对称应力双折射的方案,是实现 TM₀₁模场面积大幅 度增加且能够控制模式数量的一种有效方案。

图 4 RPF 光纤的模式退简并情况与模场分布。(a)光纤模式之间有效折射率差随波长的变化;(b) 1030 nm 处的模式分布 Fig. 4 Mode degeneracy and mode field distribution of RPF fiber. (a) Effective index difference between fiber modes versus wavelength; (b) mode distributions at 1030 nm

表1 几个典型波长的有效模场面积和模式间的有效折射率差

Table 1 Effective mode field area and effective refractive index difference between modes at several typical wavelengths

Wavelength /nm	Effective mode field area $/\mu m^2$			Effective refractive index difference $/10^{-4}$		
	TM_{01}	HE_{21}	TE_{01}	HE11-TM01	TM_{01} - HE_{21}	HE_{21} - TE_{01}
730	298	288	310	1.01	1.15	1.64
1030	369	370	386	2.97	1.20	1.45
1064	379	382	398	3.21	1.20	1.43
1550	702	794	1043	6.23	1.02	1.04
1557	732	840	1172	6.33	1.00	1.01

表 2 本设计与几种高折射率差环形纤芯光纤的对比

Table 2 Comparison of our design with several ring-core fibers with high refractive index difference

	Method in	Method in	Method in	Method in	Our design
Parameter	Ref. [10]	Ref. [19]	Ref. [20]	Ref. [21]	
Inner/outer diameter / μ m	$\sim \! 7/\! \sim \! 10$	$\sim 8 / \sim 9$	14/18	$\sim\!6/\!\sim\!16.5$	11.2/20
Refractive index difference	\sim 0.0230	0.1800	0.0300	\sim 0.0350	\sim 0.0017

更进一步, core2 可改为有源离子掺杂, 用于 RPF 激光的增益放大。从图 4 中模场分布得到, 通 过设计可将基模的主要能量限制于无源的 core1 中 心区域, 从而降低其增益, 并使其模式竞争能力大幅 小于 TM₀₁模, 类似于设计大模场单模光纤的限制 掺杂方法^[22]。通过弯曲光纤或进一步降低纤芯 NA 等手段, 可将 TE₀₁模和 HE₂₁模充分抑制, 该光 纤可有效激发 TM₀₁模以实现大功率高纯度的 RPF 模式。 圆对称的热应力场效应可打破 LP₁₁模的模式简并, 相邻模式有效折射率差大于 1×10⁻⁴,可降低模式 之间的串扰。本设计中 RPF 光纤的纤芯折射率大 大降低,与高折射率差环形纤芯光纤相比,纤芯与包 层的折射率差可降低 1 个数量级。此类 RPF 光纤 可用于设计低 NA 大模场无源或有源光纤,其 TM₀₁有效模场面积比一般的高折射率差环形纤芯 光纤大,在高功率 RPF 激光的产生与传导中具有潜 在的应用价值。

4 结 论

提出一种全新的 RPF 光纤的方案,证明了基于

参考文献

方案,证明了基于 [1] Zhao Y Q, Zhan Q W, Zh

] Zhao Y Q, Zhan Q W, Zhang Y L, et al. Creation of

1115.

a three-dimensional optical chain for controllable particle delivery [J]. Optics Letters, 2005, 30(8): 848-850.

- Salamin Y I. Electron acceleration from rest in vacuum by an axicon Gaussian laser beam [J].
 Physical Review A, 2006, 73(4): 043402.
- [3] Kim W C, Park N C, Yoon Y J, et al. Investigation of near-field imaging characteristics of radial polarization for application to optical data storage[J]. Optical Review, 2007, 14(4): 236-242.
- [4] Kozawa Y, Sato S. Enhanced detection of longitudinal field of a radially polarized beam in confocal laser microscopy [C] // CLEO: 2015, May 10-15, 2015, San Jose, California, United States. Washington, D.C.: OSA, 2015: STh3K.2.
- [5] Yan J, Lu Y H, Wang P, et al. Improving the sensitivity of fiber-optic SPR sensor via radially polarized beam excitation [J]. Chinese Optics Letters, 2009, 7(10): 909-911.
- [6] Venkatakrishnan K, Tan B. Interconnect microvia drilling with a radially polarized laser beam [J]. Journal of Micromechanics and Microengineering, 2006, 16(12): 2603-2607.
- [7] Nesterov V, Niziev G. Laser beams with axially symmetric polarization [J]. Journal of Physics D: Applied Physics, 2000, 33(15): 1817-1822.
- [8] Huang Y P, Shi F, Wang T, et al. High-order mode Yb-doped fiber lasers based on mode-selective couplers[J]. Optics Express, 2018, 26(15): 19171-19181.
- [9] Zhao Y H, Liu Y Q, Zhang L, et al. Mode converter based on the long-period fiber gratings written in the two-mode fiber [J]. Optics Express, 2016, 24(6): 6186-6195.
- [10] Ramachandran S, Kristensen P, Yan M F. Generation and propagation of radially polarized beams in optical fibers[J]. Optics Letters, 2009, 34 (16): 2525-2527.
- [11] Lin D, Baktash N, Alam S U, et al. 106 W, picosecond Yb-doped fiber MOPA system with a radially polarized output beam [J]. Optics Letters, 2018, 43(20): 4957-4960.
- [12] Lu D, Ge T W, Wu J, et al. Thermal stress induced birefringence in double cladding fiber with noncircular inner cladding[J]. Journal of Modern Optics, 2009, 56(5): 638-645.
- [13] Guan R F, Zhu F L, Gan Z Y, et al. Stress birefringence analysis of polarization maintaining

optical fibers [J]. Optical Fiber Technology, 2005, 11(3): 240-254.

- [14] Wu Y L, Zheng Y, Li S Y, et al. Propagation properties analysis of fused taper PANDA fiber couplers[J]. Acta Optica Sinica, 2007, 27(6): 1111-1115.
 吴宇列,郑煜,李圣怡,等. 熔锥型熊猫光纤耦合器 的传输特性分析[J]. 光学学报, 2007, 27(6): 1111-
- Sakai J, Kimura T. Birefringence caused by thermal stress in elliptically deformed core optical fibers [J].
 IEEE Journal of Quantum Electronics, 1982, 18 (11): 1899-1909.
- [16] Chen C Q, Tian S X, Chen S C, et al. Solid mechanics in materials science [M]. Beijing: Beihang University Press, 1994: 39-41.
 陈昌麒,田世兴,陈森灿,等.材料学科中的固体力学 [M].北京:北京航空航天大学出版社, 1994: 39-41.
- [17] Malitson I H. Interspecimen comparison of the refractive index of fused silica [J]. Journal of the Optical Society of America, 1965, 55 (10): 1205-1209.
- [18] Tong W J. Structure design, fabrication process and property research of PANDA PMF [D]. Wuhan: Huazhong University of Science and Technology, 2006:90.
 童维军.熊猫保偏光纤结构设计、制备工艺及性能研

究[D]. 武汉: 华中科技大学, 2006: 90.

- [19] Yan Y, Zhang L, Wang J, et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes [J]. Optics Letters, 2012, 37(16): 3294-3296.
- [20] Pidishety S, Srinivas P, Srinivasan B. Studies on the propagation of orbital angular momentum beams through optical fibers with different index profiles[C] // 2015 Workshop on Recent Advances in Photonics (WRAP), December 16-17, 2015, Bangalore, India. New York: IEEE, 2015: 16596551.
- [21] Pidishety S, Srinivasan B, Brambilla G. All-fiber fused coupler for stable generation of radially and azimuthally polarized beams [J]. IEEE Photonics Technology Letters, 2017, 29(1): 31-34.
- [22] Marciante J R. Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers [J].
 IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 30-36.